Spinout News

UCLB helps commercialise medical imaging breakthrough

3 October 2024

UCLB has helped commercialise a new hand-held scanner, developed by UCL researchers. The product can generate highly detailed 3D photoacoustic images in just seconds, paving the way for their use in a clinical setting for the first time and offering the potential for earlier disease diagnosis.

In the study, published in Nature Biomedical Engineering, the team show their technology can deliver photoacoustic tomography (PAT) imaging scans to doctors in real time, providing them with accurate and intricate images of blood vessels, helping inform patient care.

Commercialisation of UCL research

UCLB was instrumental in patenting the underlying IP and facilitating the commercialisation process. In 2019, the IP was licensed to a UCL spinout company, DeepColor Imaging founded by members of the UCL research team. DeepColor now market a range of scanners based on PAT technology worldwide.

UCLB Business Manager Dr. Weng Sie Wong said: “It’s been fantastic to see this ground-breaking innovation receive the attention it deserves. The wide reaching possibilities of this technology will make it a valuable tool for clinicians worldwide.”

This research was supported by Cancer Research UK, the Engineering & Physical Sciences Research Council, Wellcome, the European Research Council and the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

About PAT

PAT imaging uses laser-generated ultrasound waves to visualise subtle changes (an early marker of disease) in the less-than-millimetre-scale veins and arteries up to 15mm deep in human tissues.

However, up until now, existing PAT technology has been too slow to produce high-enough quality 3D images for use by clinicians.

During a PAT scan patients must be completely motionless, meaning any movement during a slower scan can cause images to blur and therefore not guarantee clinically useful images.

The older PAT scanners took more than five minutes to take an image – by reducing that time to a few seconds or less, image quality is much improved and far more suitable for people who are frail or poorly.

Researchers say the new scanner could help to diagnose cancer, cardiovascular disease and arthritis in three to five years’ time, subject to further testing.

Corresponding author, Professor Paul Beard (UCL Medical Physics and Biomedical Engineering and the Wellcome/EPSRC Centre for Interventional and Surgical Sciences), said: “We’ve come a long way with photoacoustic imaging in recent years, but there were still barriers to using it in the clinic.

“The breakthrough in this study is the acceleration in the time it takes to acquire images, which is between 100 and 1,000 times faster than previous scanners.

“This speed avoids motion-induced blurring, providing highly-detailed images of a quality that no other scanner can provide. It also means that rather than taking five minutes or longer, images can be acquired in real time, making it possible to visualise dynamic physiological events.

“These technical advances make the system suitable for clinical use for the first time, allowing us to look at aspects of human biology and disease that we haven’t been able to before.

“Now more research is needed with a larger groups of patients to confirm our findings.”

Professor Beard added that a key potential use for the new scanner was to assess inflammatory arthritis, which requires scanning all 20 finger joints in both hands. With the new scanner, this can be done in a few minutes – older PAT scanners take nearly an hour, which is too long for elderly, frail patients, he said.

Testing the scanner on patients

In the study, the team tested the scanner during pre-clinical tests on 10 patients with type-2 diabetes, rheumatoid arthritis or breast cancer, along with seven healthy volunteers.

In three patients with type-2 diabetes, the scanner was able to produce detailed 3D images of the microvasculature in the feet, highlighting deformities and structural changes in the vessels. The scanner was used to visualise the skin inflammation linked to breast cancer.

Andrew Plumb, Associate Professor of Medical Imaging at UCL and consultant radiologist at UCLH and a senior author of the study, said: “One of the complications often suffered by people with diabetes is low blood flow in the extremities, such as the feet and lower legs, due to damage to the tiny blood vessels in these areas. But until now we haven’t been able to see exactly what is happening to cause this damage or characterise how it develops.

“In one of our patients, we could see smooth, uniform vessels in the left foot and deformed, squiggly vessels in the same region of the right foot, indicative of problems that may lead to tissue damage in future. Photoacoustic imaging could give us much more detailed information to facilitate early diagnosis, as well as better understand disease progression more generally.”

Photoacoustic tomography

Since its early development in 2000, PAT has long been heralded as having the potential to revolutionise our understanding of biological processes and improve the clinical assessment of cancer and other major diseases.

It works using the photoacoustic effect, which occurs when materials absorb light and produce sound waves.

PAT scanners work by firing very short laser bursts at biological tissue. Some of this energy is absorbed, depending on the colour of the target, causing a slight increase in heat and pressure that in turn generates a faint ultrasound wave containing information about the tissue. The whole process takes place in just a fraction of a second.

In earlier research, what physicists and engineers at UCL (led by Professor Beard) discovered was that the ultrasound wave can be detected using light.

In the early 2000s they pioneered a system where a sound wave causes minute changes in thickness of a thin plastic film which can be measured using a highly-tuned laser beam.

The results revealed tissue structures which have never been seen before.