Magnetic Microbubbles


Magnetic microbubbles can be injected into the blood stream and may be directed to a specific body location by the application of an external magnetic field. They enhance ultrasound images, and can be used to deliver, and promote uptake of, cargo molecules such as drugs, antibodies or DNA. They thus have many potential applications in clinical settings, as well as in both basic and medical research.

Magnetic Microbubbles2020-06-10T14:52:30+01:00

III-V laser diodes on germanium substrates


The Photonics Research Group at UCL have recently developed and demonstrated a monolithically integrated III-V compound semiconductor photonic structure on a Silicon substrate. The monolithic III-V on Silicon device opens up new possibilities for integrated system-on-a-chip designs with high bandwidth and high data transfer rates.

III-V laser diodes on germanium substrates2020-03-09T00:03:07+00:00

New Micro-Cantilever Configuration


A team at London Centre for Nanotechnology are developing a device that is already being used to detect the presence viruses, bacteria and proteins from a single sample. It is based on a cantilever sensing method and is configured to give binding energy information as well as a quantative assay. The new system has already displaced use of the commercially available system in the Lab as the virologists find the new configuration much easier to use. The project is currently supported by the EPSRC for research on HIV management.

New Micro-Cantilever Configuration2020-03-09T00:03:06+00:00

Passive Wireless Detection System


A team of researchers at UCL's Department of Electronic and Electrical Engineering, have developed a method for detection and tracking using existing wireless signals (WiFi) present in the everyday environment.

Passive Wireless Detection System2020-03-09T00:03:06+00:00

Ultra-Fast Fluidic Analysis


A research group at UCL have developed a new microfluidic-based method which can be used in combination with either chemical or optical heating-based denaturation to measure protein stability curves and calculate affinity constants from nanolitre sample volumes.

Measurement times are significantly reduced from standard methods and envisaged applications range from high-throughput drug discovery to healthcare diagnostics and pathogen detection.

Ultra-Fast Fluidic Analysis2020-03-09T00:03:06+00:00
Go to Top